Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.18.517156

ABSTRACT

Millions of Norway rats (Rattus norvegicus) inhabit New York City (NYC), presenting the potential for transmission of SARS-CoV-2 from humans to rats and other wildlife. We evaluated SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Results showed that 13 of 79 rats (16.5%) tested IgG or IgM positive, and partial genomes of SARS-CoV-2 were recovered from four rats that were qRT-PCR positive. Using a virus challenge study, we also showed that Alpha, Delta, and Omicron variants can cause robust infections in wild-type Sprague Dawley (SD) rats, including high level replications in the upper and lower respiratory tracts and induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in the highest infectivity. In summary, our results indicated that rats are susceptible to infection with Alpha, Delta, and Omicron variants, and rats in the NYC municipal sewer systems have been exposed to SARS-CoV-2. Our findings highlight the potential risk of secondary zoonotic transmission from urban rats and the need for further monitoring of SARS-CoV-2 in those populations.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.13.21261989

ABSTRACT

BackgroundSARS-CoV-2 epidemiology implicates airborne transmission; aerosol infectiousness and impacts of masks and variants on aerosol shedding are not well understood. MethodsWe recruited COVID-19 cases to give blood, saliva, mid-turbinate and fomite (phone) swabs, and 30-minute breath samples while vocalizing into a Gesundheit-II, with and without masks at up to two visits two days apart. We quantified and sequenced viral RNA, cultured virus, and assayed sera for anti-spike and anti-receptor binding domain antibodies. ResultsWe enrolled 49 seronegative cases (mean days post onset 3.8 {+/-}2.1), May 2020 through April 2021. We detected SARS-CoV-2 RNA in 45% of fine ([≤]5 {micro}m), 31% of coarse (>5 {micro}m) aerosols, and 65% of fomite samples overall and in all samples from four alpha-variant cases. Masks reduced viral RNA by 48% (95% confidence interval [CI], 3 to 72%) in fine and by 77% (95% CI, 51 to 89%) in coarse aerosols; cloth and surgical masks were not significantly different. The alpha variant was associated with a 43-fold (95% CI, 6.6 to 280-fold) increase in fine aerosol viral RNA, compared with earlier viruses, that remained a significant 18-fold (95% CI, 3.4 to 92-fold) increase adjusting for viral RNA in saliva, swabs, and other potential confounders. Two fine aerosol samples, collected while participants wore masks, were culture-positive. ConclusionSARS-CoV-2 is evolving toward more efficient aerosol generation and loose-fitting masks provide significant but only modest source control. Therefore, until vaccination rates are very high, continued layered controls and tight-fitting masks and respirators will be necessary. Key PointsO_LICases exhale infectious viral aerosols C_LIO_LISARS-CoV-2 evolution favors more efficient aerosol generation. C_LIO_LILoose-fitting masks moderately reduce viral RNA aerosol. C_LIO_LIVentilation, filtration, UV air sanitation, and tight-fitting masks are needed to protect vulnerable people in public-facing jobs and indoor spaces. C_LI


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.18.21253228

ABSTRACT

Inpatient COVID-19 cases present enormous costs to patients and health systems. Many hospitalized patients may still test COVID-19 positive, even after resolution of symptoms. Thus, a pressing concern for clinicians is the safety of discharging these asymptomatic patients if they have any remaining infectivity. This case report explores the viral viability in a patient with persistent COVID-19 over the course of a two-month hospitalization. Positive nasopharyngeal swab samples, analyzed by quantitative reverse transcription polymerase chain reactions (qRT-PCR), were collected and isolated in the laboratory, and infectious doses were analyzed throughout the hospitalization period. The patient experienced waning symptoms by hospital day 40 and had no viable virus growth in the laboratory by hospital day 41, suggesting no risk of infectivity, despite positive RT-PCR results, which prolonged his hospital stay. Notably, this case showed infectivity for at least 24 days from disease onset, which is longer than the discontinuation of transmission-based precautions recommendation by CDC. Thus, our findings suggest that the timeline for discontinuing transmission-based precautions may need to be extended for patients with prolonged illness. Additional large-scale studies are needed to draw definitive conclusions on the appropriate clinical management for these patients.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.03.21250928

ABSTRACT

Since the first report of SARS-CoV-2 in December 2019, genetic variants have continued to emerge, complicating strategies for mitigating the disease burden of COVID-19. In this study, we investigated the emergence and spread of SARS-CoV-2 genetic variants in Missouri, examined viral shedding over time, and analyzed the associations among emerging genetic variants, viral shedding, and disease severity. The study population included COVID-19 positive patients from CoxHealth (Springfield, Missouri) and University of Missouri Health Care (UMHC; Columbia, Missouri) between March and October 2020. All positive SARS-CoV-2 nasopharyngeal swabs (n=8,735) from March-October 2020 were collected. Available viral genomes (n=184) from March to July were sequenced. Hospitalization status and length of stay were extracted from medical charts of 1,335 patients (UMHC and sequenced patients). The primary outcome was hospitalization status (yes or no) and length of hospital stay (days). For the 1,335 individuals, 44 were hospitalized and four died due to COVID-19. The average age was 34.35 (SD=16.82), with 55.1% females (n=735) and 44.7% males (n=596). Multiple introductions of SARS-CoV-2 into Missouri, primarily from Australia, Europe, and domestic states, were observed. Four local lineages rapidly emerged and spread across urban and rural regions in Missouri. While most Missouri viruses harbored Spike-D614G mutations, many unreported mutations were identified among Missouri viruses, including seven in the RNA-dependent RNA polymerase complex and Spike protein that were positively selected. A 15.6-fold increase in viral RNA levels in swab samples occurred from March to May and remained elevated through October. Accounting for comorbidities, individuals test-positive for COVID-19 with high viral loads were less likely to be hospitalized (odds ratio=0.39, 95% confidence interval=0.20, 0.77) and more likely to be discharged from the hospital sooner (hazard ratio=2.9, p=0.03) than those with low viral loads. Overall, the first eight months of the pandemic in Missouri saw multiple locally acquired mutants emerge and dominate in urban and rural locations. Although we were unable to find associations between specific variants and greater disease severity, Missouri COVID-positive individuals that presented with increased viral shedding had less severe disease by several measures.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.369165

ABSTRACT

The long-lasting global COVID-19 pandemic demands timely genomic investigation of SARS-CoV-2 viruses. Here we report a simple and efficient workflow for whole genome sequencing utilizing one-step RT-PCR amplification on a microfluidic platform, followed by MiSeq amplicon sequencing. The method uses Fluidigm IFC and instruments to amplify 48 samples with 39 pairs of primers in a single step. Application of this method on RNA samples from both viral isolate and clinical specimens demonstrate robustness and efficiency of this method in obtaining the full genome sequence of SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL